
1

On the Interaction between Business Models and Software
Architecture in Electronic Commerce

Jaap Gordijn
Bakkenist Management Consultants/Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam, fax: +31 (0)20 444 7653
e-mail: gordijn@cs.vu.nl

Hans van Vliet
Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam, fax: +31 (0)20 444 7653
e-mail: hans@cs.vu.nl

Abstract. To design a business model for electronic commerce it is necessary to develop
an architecture of the software system that will support this model. Such an architecture
shows at an early stage to what extent the business model can be supported and implemented
by a software system. If constraints of the business model cannot be supported by a software
system, the model itself can be changed. We investigate this interaction between business
model and architecture by carrying out a case study in the area of electronic commerce: the
design and analysis of a software architecture for a directory service.

Keywords. Electronic commerce, business model, software architecture, assessment, directory service,
fraud, case study.

Introduction
From our consultancy experience, it shows that the realization of an electronic commerce

system is a far from trivial task. On the one hand, such a system poses rather stringent
business constraints pertaining to, for example, the prevention of committing a fraud. On the
other hand, an electronic commerce system should support a profitable way of doing business.

The development of a business model and the belonging commerce software system are
both design problems. A business model shows at a conceptual level the way of doing
business by defining the exchange of values between actors such as customers and sellers, and
constraints such as the prevention of committing a fraud. Values can be money, services or
(digital) goods. Since it is not always clear from the beginning which value exchanges exist or
even which actors participate, we have to take many design decisions during the development
of a business model. The design of a business model is largely influenced by the interests and
power of the various commercial actors involved and the goals they want to reach. Decisions
are business oriented. A software architecture of an electronic commerce application shows
the conceptual- and logical design of a system by indicating software components and
relationships between components. It reflects the earliest set of information technology related
design decisions with respect to the system supporting the business model. Decisions are
taken by amongst others IT-designers and maintainers but not by business oriented people.

A problem in designing electronic commerce applications is that business- and
architectural design decisions are sometimes intertwined. Consider prevention of committing
fraud. Possibly, such an issue can be addressed by developing software supporting the
prevention of committing a fraud and therefore can be seen as a design decision on the
software architectural level. However, it might also be possible or sometimes even necessary,
to redesign the business model in such a way that it supports prevention of committing fraud
by itself, for instance by creating a conflict of interests between actors. Creating such a
conflict is a design decision on the business level.

Therefore, we claim in order to develop an electronic commerce application, it is
necessary to assess an initial business model by developing a software architecture. Such an
architecture should be evaluated with respect to value exchanges and constraints mentioned in
the business model. In some cases, the software architecture does not address all value

mailto:gordijn@cs.vu.nl

exchanges well or does not respect all constraints. Another software architecture can be
considered but in some cases it is necessary to adjust the business model itself, for instance if
it shows up that certain constraints can't be met on the architectural level.

We explore our claim by carrying out a realistic electronic commerce case study. We
develop a business model and a software architecture for an electronic commerce system, and
next assess the extent to which that architecture supports the business model. It turns out that
the software architecture does not allow the realization of certain constraints posed by the
business model. The business model is then adapted in order to support these constraints.

Section 2 discusses the relationships between business models, quality attributes, and
software architectures. Our choice for a particular business model is elaborated in sections 3
and 4. Section 5 discusses the software architecture, and some tradeoffs between software
architectures and business models. Section 6 contains some conclusions.

How to develop electronic commerce systems
A first step in developing an electronic commerce software system is to define one or

more business models. A business model outlines the electronic commerce service for all
actors. It states amongst others the actors involved and the exchange of values between actors.
Actors are the participating parties in the electronic commerce application such as sellers,
customers and intermediaries. Values can be products, services or money. A business model
also states constraints, for example "committing a fraud should be prevented". Developing a
business model requires intensive communication between decision-makers, domain experts
and business developers.

A next step is the identification of quality attributes of the electronic commerce
application. Different quality attributes may be important, such as functionality, performance,
security, system modifiability, and portability. These quality attributes, as well as other
factors such as the developing organization, the technical environment and the experience of
the architect all effect the software architecture [Bass98]. It is not easy and in most cases
impossible to design a software architecture fulfilling all quality attributes. Using trade-off
analysis we can balance quality attributes and make architectural choices. For electronic
commerce applications we sometimes have an additional possibility in the case of conflicts
between qualities. We can change the business model in such a way that an architecture can
be designed which has fewer conflicts between quality attributes. Changing the business
model means the introduction of new actors, a change in the exchange of values or new
constraints. The resulting relationship between business models, quality attributes and
architecture is depicted in Figure 1.

Figure 1 Business mo

In our case study, we only deal with f
quality attributes. First we consider functi
architecture meeting these attributes. We e
which fraud prevention is achieved. If the
we redesign the architecture, but leave the
approach is proposed in [Bosch98]. Some
be addressed by only re-designing the arch

influences influences

Business model:
actors

exchange of values
constraints

Software architecture:
components

relations between
components
Quality attributes:
functionality

security
performance
2

del, quality attributes and architecture

unctional quality attributes and fraud prevention
onal quality attributes only, and design a draft
valuate this architecture by assessing the extent to
architecture does not meet some of the attributes,
 functional quality attributes as they are. This
 fraud prevention requirements, though, can hardly
itecture. However, we can also change the business

influences influences

3

model, for instance by adding actors or changing the way values are exchanged. If we change
the business model, we have to re-identify quality attributes and redesign the architecture.

The business model will be defined using natural language. We concentrate on the
actors, the exchange of values between these actors and constraints such as fraud prevention.
We use text-based use cases to define the functional quality attributes. Use cases describe a
typical interaction between the actor and the system offering the directory service. Fraud
prevention quality attributes are also described using natural language. We use interaction
diagrams as the leading view on the software architecture [Fowler97,UML97]. These
diagrams show components interacting with each other using sequences of messages.
Components act on behalf of an actor. An interaction diagram is useful because it gives a
clear view of the outline of the directory service. Furthermore, the exchange of messages can
be analyzed for opportunities to commit a fraud. We distinguish a number of interaction
diagrams, one for each use case.

Business models for a directory service – a case study
Currently, the Internet consists of a large, increasing number of web sites, representing

companies selling products or services. For potential customers, it is difficult to find the
product or service that best suits their needs. To a large extent, this is due to information
overload [Bollier96]. There is a need for an intermediary that brings potential customers and
sellers together. Search engines, and more specifically directory servers have recognized this
fact. Directory servers try to match a customer and seller based on the product or service the
customer is looking for.

More and more, a directory service is becoming a commercial undertaking. Such a service
then needs a business model, which states how money can be earned by exchanging values.
Several different value exchanges are possible. For instance, since the directory service is a
web site, advertisements can be shown for each customer querying the service. The ad to be
shown possibly depends on the customer query [Aggar98]. Another value exchange focuses
on selling marketing information [Kannan98]. The directory server collects queries from
identifiable customers to construct an individual client profile that can be sold. These value
exchanges both rely on payment by parties who are not the actual users of the service. A third
value exchange involves payment by the actual users of the service. In this paper, we consider
this latter model.

For each value exchange, one has to associate a pricing scheme. A pricing scheme shows
the calculation of the price to be paid for service or product. For instance, a possible scheme
is to charge a seller a yearly fee for unlimited mediation by the directory server. The
disadvantage of such a pricing scheme is the difficulty to determine whether the fee is
reasonable, both for the seller and for the directory server itself. The seller does not know
whether the fee to be paid is reasonable. In case only a few mediations occur, the seller pays
too much. The directory server will have a hard time convincing the seller to pay the fee and
therefore has a selling problem. Another possibility is to use a pricing scheme which is based
on the effectiveness of the directory server for a particular user of the service. For this case,
we investigate the latter pricing scheme.

Effectiveness of a directory service
Effectiveness refers to the extent to which a stated goal of a particular actor is reached.

Depending on the value exchanges outlined in the previous section, a directory server can
have multiple goals. Its goal may be to sell as many ads as possible or to sell high quality
marketing information. The goal of both the seller and the customer is a successful match. In
this paper, we focus on the last goal.

A mediated match between seller and customer can have different meanings: (1) a
potential customer gets a list with sellers offering a product or service, (2) a potential
customer visits the shop of a seller, and (3) a business transaction between customer and
seller occurs. Both seller and customer are willing to pay for each kind of match (Table 1).

4

Match→
Paying actor↓

list of products shop visit business transaction

seller seller pays to occur (high) on the
list of potential sellers in order to
increase the chance to be selected

seller pays for shop-entrance
to increase the chance the
customer buys something

seller pays for a
business transaction
occurred

customer Customer pays to get a list of
most relevant sellers so he can
select the most appropriate seller

customer pays if he thinks a
shop can fulfill his needs

customer pays for
business transaction
occurred

Table 1 Actors paying for different kinds of matches

In this case, we assume that only the seller pays the directory server, as is common in
current services of that kind. However, no principal reason exists why the customer would not
pay. In our approach, seller and directory server are both in need of measuring effectiveness.
The directory server is interested since he wants to send a bill to the seller based on
effectiveness; the seller wants to validate this bill.

For sellers, it is most interesting to judge effectiveness of a directory service using the
transaction based definition of matching. Ultimately, the thing they are most interested in is
closing a business transaction. In this case, we employ the business transaction based
definition of matching. However, the ‘list of sellers’ and ‘shop visit’ interpretations of
matching as illustrated in Table 1 can be combined with the transaction based definition of
matching.

Once we can measure effectiveness of the directory service reliably, payment for the
service can be based upon it. The seller pays an amount of money, for instance a dollar per
match or a percentage of the transaction value, to the directory server. Presumably, this is
only acceptable for both the seller and the directory service if committing a fraud is
impossible.

The business model we employ in this paper can be summarized as follows. Actors are a
directory server, customers, and sellers. The customer queries the directory server for free; the
seller pays the directory server a fee for each business transaction that was mediated by the
directory server. Finally, committing a fraud should not be possible.

An architecture for measuring the effectiveness of directory services
To assess the feasibility of our business model, we design a basic software architecture

focussing on functional quality attributes. We evaluate this architecture with respect to fraud
opportunities and the redesign the software architecture accordingly. As it turns out, we
cannot address all fraud opportunities without changing the business model.

An architecture focussing on functional quality attributes
We describe functional quality attributes with use cases below, along with a sequence

diagram as our main architectural view. Use cases are derived from the business model.

Use case: Query. The customer queries the directory server. The directory server has a
database containing product (types) offered by sellers. The directory server returns hits to the
customer. A hit contains information about a seller offering a product.

Use case: Buy

Order

Deliver

Pay

Report

Report

Pre-order

Customer

Seller

Log

Figure 2 Buying a product

5

The customer uses hits to select a seller. He may visit several sellers and compare
offerings in detail. We refer to this as pre-ordering communication. The pre-ordering
communication is not in the scope of this case; we assume that in the end the customer selects
a seller. After selecting a seller, a business transaction starts. In principle, the business
transaction is between customer and seller and has three parts: (1) ordering, (2) payment and
(3) (confirmation of) delivery of the product or service. Either the customer or seller reports
the business transaction to a log. The log contains a list of all successful matches. Since we
assume an honest environment, the log can be located anywhere. It can be a separate,
independent actor or it can be part of the seller, directory server or even the customer.
Because we discuss only functionality, we ignore the location of the log and simply show it as
a separate entity. Either the seller or the customer has to report the match to the log. At this
time, we have no criterion to make this decision. Therefore both options are represented by a
dashed line. If the seller reports the transaction, the order should include a field indicating the
originating directory server. Otherwise, the seller cannot report the mediating directory server

Use case: Report. Both the directory server and the seller are interested in a periodical
report of successful matches. The directory server is interested since the report can be used to
charge the seller on a per-match basis. The seller can use the report to evaluate the
effectiveness of the directory service, and also to check the bill he has to pay.

Use case: Bill. Periodically, e.g. after receiving a report of successful matches, the
directory server sends the seller an invoice. The seller pays the invoice.

An architecture for a dishonest world
The draft architecture we have outlined so far provides an architectural overview of the

service to offer. However, we still have to address prevention of fraud. Recall this was a
constraint in the business model. This constraint results in the following, more detailed,
quality attributes. (1) Committing a fraud by seller and directory server should be prevented.
Customer fraud is not assumed. This is a reasonable assumption since the customer is only
interested in the content of the directory server and not in its effectiveness. (2) Fraud can
being committed during processing (e.g. by the seller) or during communication. We assume
that actors are capable of monitoring and tampering with network traffic. Due to space
restrictions, we limit ourselves to fraud committed by the seller.

Fault tree-analysis
We evaluate the draft architecture with respect to committing a fraud using fault-tree

analysis [Leveson86]. We briefly report on this analysis and continue with one of the more
interesting possibilities to commit a fraud. Fault tree analysis is intended to analyze possible
causes for hazardous events. We used a fault tree to analyze types of frauds and their causes.

In our case we can have two types of frauds: (1) the log contains too few matches (fraud
by seller) and (2) the log contains too many matches (fraud by directory server). The first case
refers to matches that did occur but were not logged; the second fraud is about matches that
were logged but did not actually occur. For each type of fraud, a tree has been constructed
consisting of the type of fraud and possible causes. Causes can be joined by an AND
relationship (all causes should occur) or an OR relationship (at least one cause should occur).
Causes are decomposed in sub-causes. This results in a hierarchy of causes. The analysis has
been carried out for all outlined use cases. Figure 3 shows a fragment of the fault tree dealing
with the fraud “too few matches”.

This part of t
occurred matches
access to that log
during reporting
actor reports the
matches or to cha
customer to conc
reported match.

We can overc
the log by a spec
enforced by signi
matches which, i
seller has to repo
architecture since

We have not
by a mere technic
functional quality
propose an adapt

In our opinio
to reveal the prob

Reward of the c
Our fault tree

the interest of the
guarantees a com
between seller an
transactions. He r
server. However,
from the seller. T
charge for the bo
values and thus c

The business
operating on beh
directory server f
was mediated by
reports a match to
Customer receive
model leads to th

Too few matches (fraud by seller)

s
The seller changes log entries
Figure 3 Fault tree ana

he fault tree deals with the situ
. First, the seller can change or
. Second, the seller can concea
of the match to the log. Recall
match. In case the seller reports
nge matches. If the customer r
eal the match or change the ma

ome some problems by applyi
ific actor can be restricted. Non
ng reports of matches by the se
f needed, can be verified afterw
rt the match. These measures im
 messages exchanged between
been able to find solutions suc
al solution. However, concealm
 attribute and thereby changing

ed model ensuring report of all
n, it was necessary to carry out
lem of concealing matches.

ustomer
 analysis revealed that the selle
 directory server to have a repo
plete log of occurred matches.
d customer. The customer rece
eceives these points from the d
 the directory server only gives
he seller pays a fee to the direc
nus points. The conflict of inter
hanges the business model.
 model can be redefined as foll
alf of the directory server), cust
or free. Seller pay the directory
 the directory server. The log pa
 the log. Sellers pay the direct
 gifts from the directory server
e following changed use cases
The log receives wrong or no matche
6

lysis

ation
 delet
l or de
that w
 matc

eports
tch. I

ng tec
-repu
ller [
ards.
ply

 comp
h that

ent c
 the b

 matc
 a fau

r or c
rt of
Basic
ives b
irecto
 his p
tory s
est re

ows.
omer
 serv
ys th

ory se
 in re
(Tabl

s
The seller denies matche
The seller conceals matches
 for “too few matches”

that the seller commits a fraud with
e matches in the log directly if he has
ny matches or he can change matches
e did not yet decide on the issue which
hes, it is easy for him to conceal
 matches, the seller may ransom the

n both cases, the seller is able to deny a

hnical measures. For instance, access to
diation of reported matches can be
Menezes96]. The log stores signed
 To use such a signature solution, the
a small change in the software
onents change slightly.

 concealment of matches is impossible
an be addressed by changing a
usiness model. In the next section, we

hes by the seller.
lt-tree analysis on the initial architecture

ustomer may conceal matches. It is in
all matches. We propose a solution that
ally, we create a conflict of interest
onus points for each business
ry server or an actor representing the
oints away if he gets a report of a match
erver for each match plus an additional
sults in a change in the exchange of

Actors are a directory server (plus a log
s, and seller actors. Customer queries the
er a fee for each business transaction that
e customer bonus points if the seller
rver a fee for each paid bonus point.
turn for bonus points. This business
e 2):

7

Use case Actors Description
Buy Customer

Seller
Directory server

Customer buys a product and the match is reported to the log
(operating on behalf of the directory server) by the seller.
Customer receives bonus point from the log (operating on behalf
of the directory server)

Bill Seller
Directory server

The seller receives a bill for each match and pays

Handle
gifts (new)

Customer
Directory server

The customer receives gifts from the directory server in return for
bonus points

Table 2 New use cases

A changed set of use-cases results in architectural changes too. For brevity, we discuss
architectural changes caused by changes in the use-case 'buy' only.

Use case: Buy. After a customer orders a product, he receives bonus points. Many
companies already are offering such bonus points as part of a customer loyalty program
[Kannan98]. The directory server is the only actor who can convert the points to gifts. The log
is the only actor who issues the bonus points (on behalf of the directory server). After the
seller receives the order, he reports the match to the log. The log sends the bonus to the
customer. The customer pays the seller and the seller delivers the product.

Transferring the bonus, reporting the occurred business transaction, paying the seller by
the customer, and delivering the product must be an atomic operation, called good atomicity
[Camp96]. Good atomicity ensures fair exchange of values. In this case, the customer receives
his ordered good and bonus points, the log receives a report and the seller receives payment or
in case something goes wrong, nobody receives anything. A trusted third party can be helpful
to achieve this.

New frauds
Initially we assumed the customer does not commit frauds. However, by changing the

business model, the customer has an interest in more bonus points. Therefore a change in the
quality attribute regarding fraud prevention occurs. Besides the seller and directory server, the
customer is a possible actor who may commit a fraud. A new fault tree has to be constructed
for the new situation. As it turns out, the tree indicates a new way to commit a fraud.

In the new model, the seller pays the value of the bonus plus a fee to the directory server.
The seller can cheat by offering the customer the bonus itself plus a fraction of the fee he
would have paid to the directory server. In fact, it is interesting for the seller to offer the
customer the following compensation:

$compensationto customer < $feeto directory server + $value of bonus to directory server

This fraud can be prevented as follows. The bonus is not a normal currency, but an own
currency of the directory server (bonus points). It is interesting for the customer to save these
points since the directory server has nice gifts. Therefore, the customer wants to collect these
gifts from all sellers he is buying products from. The customer makes no exception for one
seller; he wants bonus points instead of money. Moreover, the fee represents a small fraction
of the value of the transaction so the customer is not interested in a few dollar cents.

Now, consider the existence of a significant number of fraudulent sellers. The customer
accumulates money received from fraudulent sellers and buys gifts in a normal shop. To
prevent this, the gift he wants to receive from the directory server must be substantially
cheaper to obtain using bonus points than with real money. Therefore, the following should
hold:

$giftobtained via directory server < $giftobtained via regular shop

8

The directory server can accomplish this by buying gifts in large amounts and negotiating
bulk prices. Therefore, the maximum fee directly depends on the ability of the directory
server to buy gifts against low prices.

Lessons learned
This paper began with the statement that it is useful to develop a software architecture of

an electronic commerce software system to assess to what extent that systems supports the
chosen business model. In case the software architecture reveals that some constraints of the
business model cannot be met, the business model itself can be adjusted.

We found, by investigating a case, that quality attributes resulting from an electronic
commerce business model may in some cases only partly be addressed by technical means in
a software system. Other quality attributes might have to be addressed by changing the
business model. For instance, non-repudiation of reported matches can be supported using
digital signatures, a technical measure. Also, a direct change of entries in the log can be
addressed by using access control and limited usage of system functions by actors. However,
we have not found any technical measure to prevent concealment of matches by the seller. It
is possible to handle this case by changing the business model, for instance by creating a
conflict of interest between seller and customer. This way, the seller is forced to report all
matches. We consider the creation of conflicts of interest as a change in the business model.
The conflict of interest is created using bonus points which are exchanged between actors.
This implies a change in the exchange of values.

We assessed to what extent a software system supports an electronic commerce business
model, using a software architecture. We chose an initial business model and we identified
quality attributes. The assessment of a first draft architecture revealed that some quality
attributes can be fulfilled by a software system but other quality attributes forced us to change
the initial business model. Therefore, designing a software architecture in an early stage, was
very helpful to come to a more mature business model.

References
Aggar98 C.C. Aggarwal, J.L. Wolf and P,S. Yu, A Framework for the Optimizing of WWW

Advertising,Trends in Distributed Systems for Electronic Commerce, W.Lamersdorf,
M.Merz (eds.), Springer, Berlin 1998

Bass98 L. Bass, P. Clements, R. Kazman, Software Architectures in Practice, Addison-
Wesley, 1997

Bollier96 D. Bollier, The Future of Electronic Commerce, The Aspen Institute
(publications@aspeninst.org), 1996

Bosch98 J. Bosch, P. Molin, Software Architecture Design: Evaluation and Transformation,
http://bilbo.ide.hk-r.se:8080/~bosch/ , Submitted, 1998

Camp96 L. Jean Camp, Privacy & Reliability in Internet Commerce, CMU-CS-96-198,
Carnegie Mellon Technical Report, Carnegie Mellon University, School of Computer
Science, Pittsburgh, PA. 1996

Choi97 S.Y. Choi, D.O. Stahl, A.B. Whinston, The Economics of Electronic Commerce,
Macmillan Technical Publishing, Indianapolis, 1997

Fowler97 M. Fowler, K. Scott, UML Distilled, Applying the Standard Object Modelling
Language, Addison-Wesley, Reading Massachutes, 1997

Kannan98 P.K Kannan, A.M. Chang and A. B. Whinston, Marketing Information on the I-Way:
Data Junkyard or Information Gold Mine?, Communications of the ACM, Vol41,
No3, March 1998

Kazman98 R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, The
Archicture Tradeoff Analysis Method, 4th International Conference on Engineering
of Complex Computer Systems, Augustus 1998

Leveson86 Nancy G. Leveson, Software Safety, Why, What, and How, Computing Surveys,
Vol. 18, No 2, June 1986

Menezes96 A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied
Cryptography, CRC Press Inc., Boca Raton, Florida, 1996

UML97 UML Notation Guide, http://www.rational.com/uml/documentation.html, 1997

	Introduction
	How to develop electronic commerce systems

	Business models for a directory service – a case study
	Effectiveness of a directory service
	An architecture for measuring the effectiveness of directory services
	An architecture focussing on functional quality attributes
	An architecture for a dishonest world
	Fault tree-analysis
	Reward of the customer
	New frauds

	Lessons learned
	References

